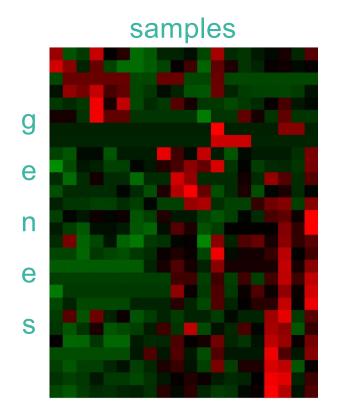

GAUSS-SEIDEL BASED NON-NEGATIVE MATRIX FACTORIZATION FOR GENE EXPRESSION CLUSTERING

Qing Liao, Naiyang Guan, Qian Zhang

Dept. of Computer Science & Technology, The Hong Kong University of Science and Technology


Tel: +86 18932416316

E-mail: ny.guan@gmail.com

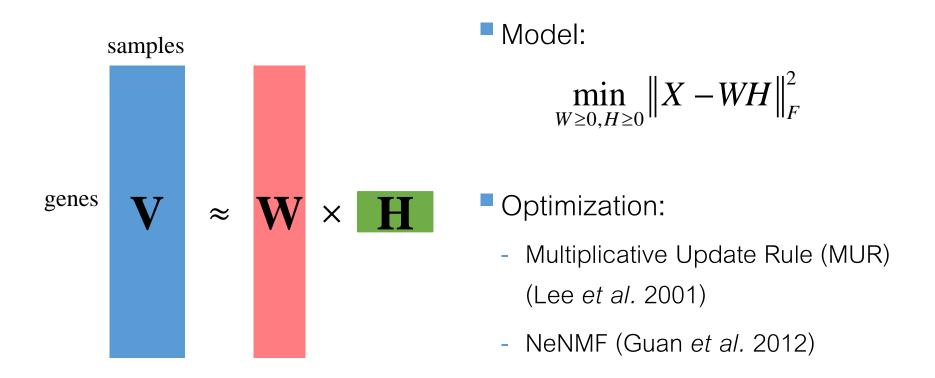
INTRODUCTION

Gene Expression Clustering

Goal

Unearths similar bio-process, gene function, gene regulation, and subtypes of cells.

Imbalance


The number of probed genes is rather greater than the number of samples.

NMF clustering (Brunet et al. 2004)

Jean-Philippe Brunet, Pablo Tamayo, Todd R Golub, and Jill P Mesirov, "Metagenes and molecular pattern discovery using matrix factorization," *Proceedings of the national academy of sciences*, vol. 101 no 12 no 4164-4169 2004

INTRODUCTION

Nonnegative Matrix Factorization (NMF)

Daniel D Lee and H Sebastian Seung, "Algorithms for nonnegative matrix factorization," in *Advances in Neural Information Processing Systems*, 2001, pp. 556-562. Naiyang Guan, Dacheng Tao, Zhigang Luo, and Bo Yuan, "NeNMF: an optimal gradient method for nonnegative matrix factorization," *IEEE Transactions on Signal Processing*, vol. 60, no. 6, pp. 2882-2898, 2012.

Gauss-Seidel Based Nonnegative Matrix Factorization (GSNMF)

Gauss-Seidel Method - An Example

Problem:

Given
$$V = \begin{bmatrix} 8 & 9 \\ 9 & 6 \\ 1 & 1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$, find

$$H = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \\ h_{31} & h_{32} \end{bmatrix} \text{ such that } V = AH.$$

Gauss-seidel Based Nonnegative Matrix Factorization (GSNMF)

Gauss-Seidel Method - An Example

1. Initialize:
$$H^1 = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 5 & 3 \end{bmatrix}$$
.

2. Decompose:
$$A = U + D + U^T = \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 2 & 2 \end{bmatrix}$$
.

3. Solve the linear system:

$$V = AH = UH + DH + U^{T}H$$
 $V - UH^{k} = DH^{k+1} + U^{T}H^{k+1}$

$$\begin{bmatrix} 8 & 9 \\ 9 & 6 \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} -6 & -7 \\ -1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \\ h_{31} & h_{32} \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \\ h_{31} & h_{32} \end{bmatrix} \longrightarrow H^2 = \begin{bmatrix} -6 & -7 \\ 11 & 14 \\ -9 & -13 \end{bmatrix}$$

Gauss-seidel Based Nonnegative Matrix Factorization (GSNMF)

- Gauss-Seidel Method Metric
- 1. Avoid the inverse operation
- 2. Fast convergence rate

Gauss-Seidel Method – Problem

GS method:
$$||X - AH||_F^2$$
, where $A = A^T$

NMF:
$$||X - WH||_F^2$$
, where $W \neq W^T$

How to adopt the GS method to solve NMF?

Gauss-seidel Based Nonnegative Matrix Factorization (GSNMF)

Gauss-Seidel Method – An approximation model

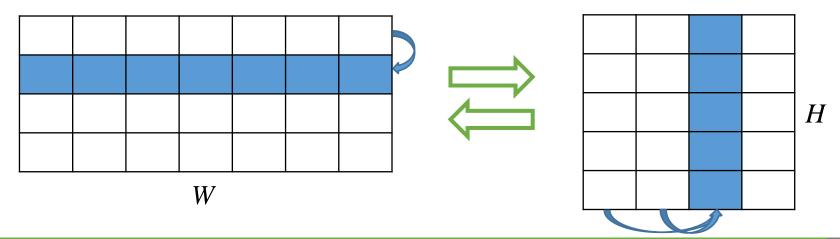
$$\min_{H\geq 0} \left\| W^T X - W^T W H \right\|_F^2$$

Is the approximation reasonable?

$$\min_{W \ge 0, H \ge 0} \|W^T X - W^T W H\|_F^2$$

$$\|W^T X - W^T W H\|_F^2 \le \|W\|_F^2 \|X - W H\|_F^2$$

Constraint:
$$\|W\|_F^2 \le 1$$


$$\|W^T X - W^T W H\|_F^2 \le \|X - W H\|_F^2$$

OPTIMIZATION

Gauss-seidel Based Nonnegative Matrix Factorization (GSNMF)

- Divide: $W^TW = U^T + D + U$
- Transform: $W^TV = W^TWH$ $W^TV = U^TH + DH + UH$ $W^TV UH = U^TH + DH$
- Update H row by row:

$$H_{i\bullet}^{k+1} = \frac{1}{(W^{kT}W^k)_{ii}} \prod_{+} \left((UH^k)_{i\bullet} - \sum_{j>i} (W^{kT}W^k)_{ij} H_{j\bullet}^k - \sum_{j$$

Gauss-seidel Based Nonnegative Matrix Factorization (GSNMF)

Algorithm 1 Gauss-Seidel Based Non-negative Matrix Factorization

Input:
$$V \in R_{+}^{m \times n}, 1 \le r \le \min\{m, n\}.$$

Output: $W \in \mathbb{R}_+^{m \times r}, H \in \mathbb{R}_+^{r \times n}$.

- 1: Initialize: $W^1 \ge 0, H^1 \ge 0, k = 1$.
- 2: Repeat

$$\begin{split} H^{k+1} &= GS\left(\left(\mathbf{W}^{k} \right)^{T} \mathbf{W}^{k}, \left(\mathbf{W}^{k} \right)^{T} \mathbf{V}, \mathbf{H}^{k}, tol(H^{k}) \right). \\ W^{k+1} &= GS\left(H^{k+1} (H^{k+1})^{T}, H^{k+1} V^{T}, \left(W^{k} \right)^{T}, tol(W^{k}) \right). \\ W^{k+1} &= (W^{k+1})^{T}. \\ k \leftarrow k+1. \end{split}$$

- 3: **Until** {Stopping criterion is satisfied}.
- 4: $W = W^k, H = H^k$.

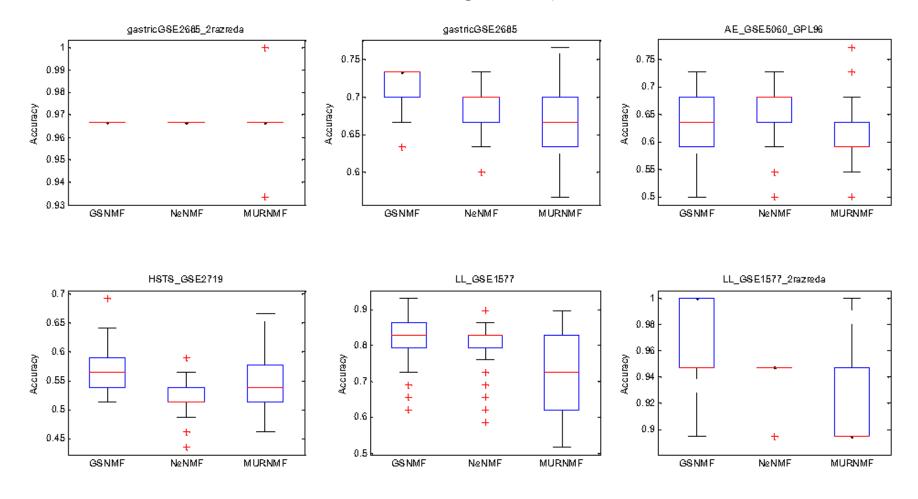
Algorithms	Time complexities of one iteration round	
NMF	$O(mnr + mr^2 + nr^2)$	
NeNMF	$O(mnr + mr^2 + nr^2) + K \times O(mr^2 + nr^2)$	
GSNMF	$O(mnr + mr^2 + nr^2)$	

EXPERIMENTS

Datasets

Table 1. Summarization of six cancer gene expression datasets.

Datasets	Samples	Genes	Classes
gastricGSE2685 2razreda ¹	30	4522	2
gastricGSE26851	30	4522	3
LL GSE1 577 ¹	29	15434	3
LL GSE1577 2razreda¹	19	15434	2
AE GSE5060 GPL96 ²	22	18651	4
HSTS GSE2719 ²	39	18753	8


¹The orange datasets: http://www.biolab.si/supp/bi-cancer/projections/.

²The GSE data: http://www.ncbi.nlm.nih.gov/gds.

EXPERIMENTS

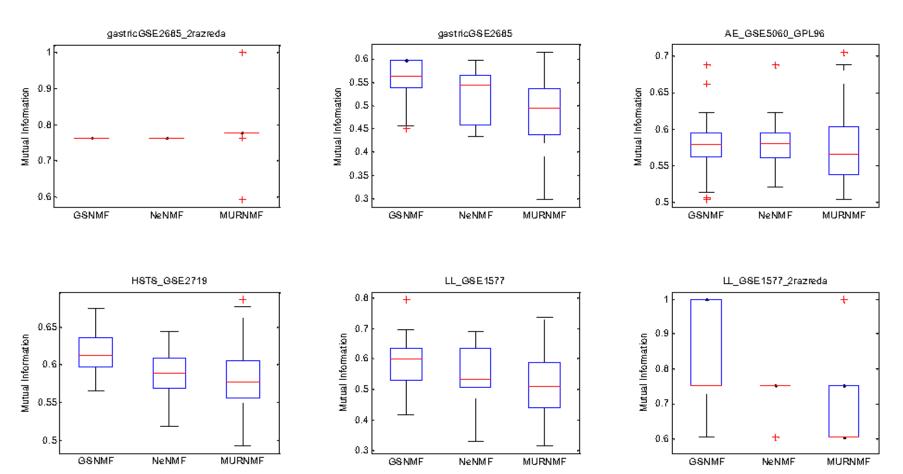
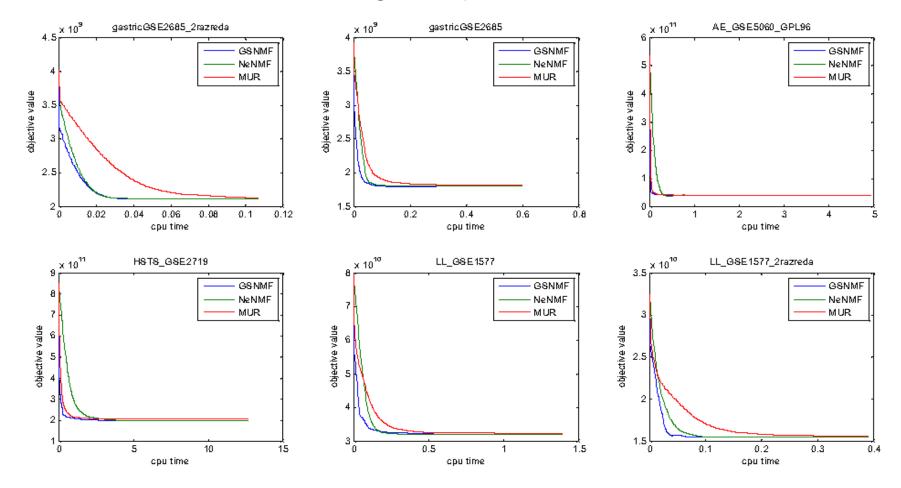

Results

Fig. 1. The box plots of the clustering accuracies for the three NMF algorithms over 100 runs on all the six gene expression datasets.

Results


Fig. 2. The box plots of the clustering mutual information for the three NMF algorithms over 100 runs on all the six gene expression datasets.

EXPERIMENTS

Results

Fig. 3. The average time consumption plots for the three NMF algorithms over 100 runs on all six gene expression datasets.

Thanks!

Questions?